Υπολογιστής: Υπολογίστε το ελάχιστο μέγεθος δείγματος της έρευνας σας

Ηλεκτρονική αριθμομηχανή για τον υπολογισμό του μεγέθους δείγματος για μια έρευνα

Η ανάπτυξη μιας έρευνας και η διασφάλιση ότι έχετε μια έγκυρη απάντηση στην οποία μπορείτε να βασίσετε τις επιχειρηματικές σας αποφάσεις απαιτεί αρκετή εμπειρία. Πρώτον, πρέπει να διασφαλίσετε ότι οι ερωτήσεις σας υποβάλλονται με τρόπο που δεν προκαλεί προκατάληψη στην απάντηση. Δεύτερον, πρέπει να διασφαλίσετε ότι κάνετε έρευνα σε αρκετά άτομα για να λάβετε ένα στατιστικά έγκυρο αποτέλεσμα.

Δεν χρειάζεται να ρωτήσετε κάθε άτομο, αυτό θα ήταν εντατικό και πολύ ακριβό. Οι εταιρείες έρευνας αγοράς εργάζονται για να επιτύχουν υψηλό επίπεδο εμπιστοσύνης, χαμηλό περιθώριο σφάλματος, ενώ επιτυγχάνουν την ελάχιστη απαιτούμενη ποσότητα παραληπτών. Αυτό είναι γνωστό ως δικό σας το μέγεθος του δείγματος. Είσαι δειγματοληψίας ένα ορισμένο ποσοστό του συνολικού πληθυσμού που θα επιτύχει ένα αποτέλεσμα που παρέχει ένα επίπεδο εμπιστοσύνη για την επικύρωση των αποτελεσμάτων. Χρησιμοποιώντας έναν ευρέως αποδεκτό τύπο, μπορείτε να προσδιορίσετε μια έγκυρη το μέγεθος του δείγματος που θα αντιπροσωπεύει τον πληθυσμό στο σύνολό του.



Εάν το διαβάζετε μέσω RSS ή email, κάντε κλικ στον ιστότοπο για να χρησιμοποιήσετε το εργαλείο:

Υπολογίστε το μέγεθος του δείγματος της έρευνας

Πώς λειτουργεί η δειγματοληψία;

Ο τύπος για τον προσδιορισμό του ελάχιστου μεγέθους δείγματος

Ο τύπος για τον προσδιορισμό του ελάχιστου μεγέθους δείγματος που απαιτείται για έναν δεδομένο πληθυσμό είναι ο εξής:

S = \ frac {\ frac {z ^ 2 \ φορές p \ αριστερά (1-p \ δεξιά)} {e ^ 2}} {1+ \ αριστερά (\ frac {z ^ 2 \ φορές p \ αριστερά (1- p \ δεξιά)} {e ^ 2N} \ δεξιά)}

Που:

  • S = Ελάχιστο μέγεθος δείγματος που πρέπει να ερευνήσετε λαμβάνοντας υπόψη τις εισροές σας
  • N = Συνολικό μέγεθος πληθυσμού. Αυτό είναι το μέγεθος του τμήματος ή του πληθυσμού που θέλετε να αξιολογήσετε.
  • e = Περιθώριο σφάλματος. Κάθε φορά που δοκιμάζετε έναν πληθυσμό, θα υπάρχει περιθώριο σφάλματος στα αποτελέσματα.
  • z = Πόσο σίγουροι μπορείτε να είστε ότι ο πληθυσμός θα επιλέξει μια απάντηση εντός ενός συγκεκριμένου εύρους. Το ποσοστό εμπιστοσύνης μεταφράζεται στη βαθμολογία z, ο αριθμός των τυπικών αποκλίσεων σε μια δεδομένη αναλογία είναι μακριά από το μέσο όρο.
  • p = Τυπική απόκλιση (στην περίπτωση αυτή 0.5%).

Ποια είναι η γνώμη σας;

Αυτός ο ιστότοπος χρησιμοποιεί το Akismet για να μειώσει το spam. Μάθετε πώς επεξεργάζονται τα δεδομένα των σχολίων σας.